Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Acta cir. bras ; 38: e380323, 2023. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1419862

ABSTRACT

Purpose: Sepsis is characterized by an acute inflammatory response to infection, often with multiple organ failures, especially severe lung injury. This study was implemented to probe circular RNA (circRNA) protein tyrosine kinase 2 (circPTK2)-associated regulatory mechanisms in septic acute lung injury (ALI). Methods: A cecal ligation and puncture-based mouse model and an lipopolysaccharides (LPS)-based alveolar type II cell (RLE-6TN) model were generated to mimic sepsis. In the two models, inflammation- and pyroptosisrelated genes were measured. Results: The degree of lung injury in mice was analyzed by hematoxylin and eosin (H&E) staining and the apoptosis was by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining. In addition, pyroptosis and toxicity were detected in cells. Finally, the binding relationship between circPTK2, miR-766, and eukaryotic initiation factor 5A (eIF5A) was detected. Data indicated that circPTK2 and eIF5A were up-regulated and miR-766 was down-regulated in LPS-treated RLE-6TN cells and lung tissue of septic mice. Lung injury in septic mice was ameliorated after inhibition of circPTK2. Conclusion: It was confirmed in the cell model that knockdown of circPTK2 effectively ameliorated LPS-induced ATP efflux, pyroptosis, and inflammation. Mechanistically, circPTK2 mediated eIF5A expression by competitively adsorbing miR-766. Taken together, circPTK2/ miR-766/eIF5A axis ameliorates septic ALI, developing a novel therapeutic target for the disease.


Subject(s)
Animals , Mice , Sepsis , Eukaryotic Initiation Factor-5 , MicroRNAs , Focal Adhesion Kinase 1/adverse effects , Lung Injury , Pyroptosis
2.
Journal of Southern Medical University ; (12): 807-814, 2023.
Article in Chinese | WPRIM | ID: wpr-986992

ABSTRACT

OBJECTIVE@#To investigate the regulatory role of the long non-coding RNA LINC00926 in pyroptosis of hypoxia-induced human umbilical vein vascular endothelial cells (HUVECs) and explore the molecular mechanism.@*METHODS@#HUVECs were transfected with a LINC00926-overexpressing plasmid (OE-LINC00926), a siRNA targeting ELAVL1, or both, followed by exposure to hypoxia (5% O2) or normoxia. The expression of LINC00926 and ELAVL1 in hypoxia-treated HUVECs was detected using real-time quantitative PCR (RT-qPCR) and Western blotting. Cell proliferation was detected using Cell Counting Kit-8 (CCK-8), and the levels of IL-1β in the cell cultures was determined with ELISA. The protein expression levels of pyroptosis-related proteins (caspase-1, cleaved caspase-1 and NLRP3) in the treated cells were analyzed using Western blotting, and the binding between LINC00926 and ELAVL1 was verified with RNA immunoprecipitation (RIP) assay.@*RESULTS@#Exposure to hypoxia obviously up-regulated the mRNA expression of LINC00926 and the protein expression of ELAVL1 in HUVECs, but did not affect the mRNA expression of ELAVL1. LINC00926 overexpression in the cells significantly inhibited cell proliferation, increased IL-1β level and enhanced the expressions of pyroptosis-related proteins (all P < 0.05). LINC00926 overexpression further up-regulated the protein expression of ELAVL1 in hypoxia-exposed HUVECs. The results of RIP assay confirmed the binding between LINC00926 and ELAVL1. ELAVL1 knockdown significantly decreased IL-1β level and the expressions of pyroptosis-related proteins in hypoxia-exposed HUVECs (P < 0.05), while LINC00926 overexpression partially reversed the effects of ELAVL1 knockdown.@*CONCLUSION@#LINC00926 promotes pyroptosis of hypoxia-induced HUVECs by recruiting ELAVL1.


Subject(s)
Humans , Caspase 1 , ELAV-Like Protein 1 , Human Umbilical Vein Endothelial Cells , Pyroptosis , RNA, Messenger , RNA, Long Noncoding/genetics , Cell Hypoxia
3.
Chinese Journal of Hepatology ; (12): 509-517, 2023.
Article in Chinese | WPRIM | ID: wpr-986161

ABSTRACT

Objective: To study the construction of a prognostic model for hepatocellular carcinoma (HCC) based on pyroptosis-related genes (PRGs). Methods: HCC patient datasets were obtained from the Cancer Genome Atlas (TCGA) database, and a prognostic model was constructed by applying univariate Cox and least absolute shrinkages and selection operator (LASSO) regression analysis. According to the median risk score, HCC patients in the TCGA dataset were divided into high-risk and low-risk groups. Kaplan-Meier survival analysis, receiver operating characteristic (ROC) curves, univariate and multivariate Cox analysis, and nomograms were used to evaluate the predictive ability of the prognostic models. Functional enrichment analysis and immune infiltration analysis were performed on differentially expressed genes between the two groups. Finally, two HCC datasets (GSE76427 and GSE54236) from the Gene Expression Omnibus database were used to externally validate the prognostic value of the model. Univariate and multivariate Cox regression analysis or Wilcoxon tests were performed on the data. Results: A total of 366 HCC patients were included after screening the HCC patient dataset obtained from the TCGA database. A prognostic model related to HCC was established using univariate Cox regression analysis, LASSO regression analysis, and seven genes (CASP8, GPX4, GSDME, NLRC4, NLRP6, NOD2, and SCAF11). 366 cases were evenly divided into high-risk and low-risk groups based on the median risk score. Kaplan-Meier survival analysis showed that there were statistically significant differences in the survival time between patients in the high-risk and low-risk groups in the TCGA, GSE76427, and GSE54236 datasets (median overall survival time was 1 149 d vs. 2 131 d, 4.8 years vs. 6.3 years, and 20 months vs. 28 months, with P = 0.000 8, 0.034 0, and 0.0018, respectively). ROC curves showed good survival predictive value in both the TCGA dataset and two externally validated datasets. The areas under the ROC curves of 1, 2, and 3 years were 0.719, 0.65, and 0.657, respectively. Multivariate Cox regression analysis showed that the risk score of the prognostic model was an independent predictor of overall survival time in HCC patients. The risk model score accurately predicted the survival probability of HCC patients according to the established nomogram. Functional enrichment analysis and immune infiltration analysis showed that the immune status of the high-risk group was significantly decreased. Conclusion: The prognostic model constructed in this study based on seven PRGs accurately predicts the prognosis of HCC patients.


Subject(s)
Humans , Carcinoma, Hepatocellular/genetics , Prognosis , Pyroptosis , Liver Neoplasms/genetics , Risk Factors
4.
China Journal of Chinese Materia Medica ; (24): 1779-1791, 2023.
Article in Chinese | WPRIM | ID: wpr-981395

ABSTRACT

Pyroptosis is a programmed cell death initiated by the activation of caspases, which is involved in the development and progression of several cardiovascular diseases. The gasdermins, a protein family, are key executive proteins in the development of pyroptosis, which increase cell membrane permeability, mediate the release of inflammatory factors, and aggravate the inflammatory injury. Traditional Chinese medicine(TCM)has shown unique therapeutic advantages in cardiovascular diseases with multi-component and multi-target characteristics. Currently, the effective prevention and treatment of cardiovascular diseases based on the theory of pyroptosis become a new research hotspot in this field. Based on the theories of TCM and modern medicine, this study summarized the role of pyroptosis in cardiovascular diseases such as atherosclerosis, myocardial infarction, diabetic cardiomyopathy, hypertension, and myocarditis. The role of TCM, including active monomers, crude extracts, and compound preparations, in cardiovascular protection through the regulation of pyroptosis was also summarized, providing a theoretical basis for the clinical prevention and treatment of cardiovascular diseases by TCM.


Subject(s)
Humans , Medicine, Chinese Traditional , Drugs, Chinese Herbal/therapeutic use , Cardiovascular Diseases/prevention & control , Pyroptosis , Myocardial Infarction/drug therapy
5.
China Journal of Chinese Materia Medica ; (24): 2639-2645, 2023.
Article in Chinese | WPRIM | ID: wpr-981368

ABSTRACT

This study investigated the effect of multi-glycosides of Tripterygium wilfordii(GTW) on renal injury in diabetic kidney disease(DKD) rats through Nod-like receptor protein 3(NLRP3)/cysteine-aspartic acid protease-1(caspase-1)/gsdermin D(GSDMD) pyroptosis pathway and the mechanism. To be specific, a total of 40 male SD rats were randomized into the normal group(n=8) and modeling group(n=34). In the modeling group, a high-sugar and high-fat diet and one-time intraperitoneal injection of streptozotocin(STZ) were used to induce DKD in rats. After successful modeling, they were randomly classified into model group, valsartan(Diovan) group, and GTW group. Normal group and model group were given normal saline, and the valsartan group and GTW group received(ig) valsartan and GTW, respectively, for 6 weeks. Blood urea nitrogen(BUN), serum creatinine(Scr), alanine ami-notransferase(ALT), albumin(ALB), and 24 hours urinary total protein(24 h-UTP) were determined by biochemical tests. The pathological changes of renal tissue were observed based on hematoxylin and eosin(HE) staining. Serum levels of interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected by enzyme-linked immunosorbent assay(ELISA). Western blot was used to detect the expression of pyroptosis pathway-related proteins in renal tissue, and RT-PCR to determine the expression of pyroptosis pathway-related genes in renal tissue. Compared with the normal group, the model group showed high levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), low level of ALB(P<0.01), severe pathological damage to kidney, and high protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01). Compared with the model group, valsartan group and GTW group had low levels of BUN, Scr, ALT, and 24 h-UTP and serum levels of IL-1β and IL-18(P<0.01), high level of ALB(P<0.01), alleviation of the pathological damage to the kidney, and low protein and mRNA levels of NLRP3, caspase-1, and GSDMD in renal tissue(P<0.01 or P<0.05). GTW may inhibit pyroptosis by decreasing the expression of NLRP3/caspase-1/GSDMD in renal tissue, thereby relieving the inflammatory response of DKD rats and the pathological injury of kidney.


Subject(s)
Rats , Male , Animals , Diabetic Nephropathies/genetics , Interleukin-18/metabolism , Glycosides/pharmacology , Tripterygium , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Rats, Sprague-Dawley , Caspase 1/metabolism , Pyroptosis , Uridine Triphosphate/pharmacology , Kidney , Valsartan/pharmacology , RNA, Messenger/metabolism , Diabetes Mellitus
6.
Journal of Integrative Medicine ; (12): 277-288, 2023.
Article in English | WPRIM | ID: wpr-982678

ABSTRACT

OBJECTIVE@#JieZe-1 (JZ-1), a Chinese herbal prescription, has an obvious effect on genital herpes, which is mainly caused by herpes simplex virus type 2 (HSV-2). Our study aimed to address whether HSV-2 induces pyroptosis of VK2/E6E7 cells and to investigate the anti-HSV-2 activity of JZ-1 and the effect of JZ-1 on caspase-1-dependent pyroptosis.@*METHODS@#HSV-2-infected VK2/E6E7 cells and culture supernate were harvested at different time points after the infection. Cells were co-treated with HSV-2 and penciclovir (0.078125 mg/mL) or caspase-1 inhibitor VX-765 (24 h pretreatment with 100 μmol/L) or JZ-1 (0.078125-50 mg/mL). Cell counting kit-8 assay and viral load analysis were used to evaluate the antiviral activity of JZ-1. Inflammasome activation and pyroptosis of VK2/E6E7 cells were analyzed using microscopy, Hoechst 33342/propidium iodide staining, lactate dehydrogenase release assay, gene and protein expression, co-immunoprecipitation, immunofluorescence, and enzyme-linked immunosorbent assay.@*RESULTS@#HSV-2 induced pyroptosis of VK2/E6E7 cells, with the most significant increase observed 24 h after the infection. JZ-1 effectively inhibited HSV-2 (the 50% inhibitory concentration = 1.709 mg/mL), with the 6.25 mg/mL dose showing the highest efficacy (95.76%). JZ-1 (6.25 mg/mL) suppressed pyroptosis of VK2/E6E7 cells. It downregulated the inflammasome activation and pyroptosis via inhibiting the expression of nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (P < 0.001) and interferon-γ-inducible protein 16 (P < 0.001), and their interactions with apoptosis-associated speck-like protein containing a caspase recruitment domain, and reducing cleaved caspase-1 p20 (P < 0.01), gasdermin D-N (P < 0.01), interleukin (IL)-1β (P < 0.001), and IL-18 levels (P < 0.001).@*CONCLUSION@#JZ-1 exerts an excellent anti-HSV-2 effect in VK2/E6E7 cells, and it inhibits caspase-1-dependent pyroptosis induced by HSV-2 infection. These data enrich our understanding of the pathologic basis of HSV-2 infection and provide experimental evidence for the anti-HSV-2 activity of JZ-1. Please cite this article as: Liu T, Shao QQ, Wang WJ, Liu TL, Jin XM, Xu LJ, Huang GY, Chen Z. The Chinese herbal prescription JieZe-1 inhibits caspase-1-dependent pyroptosis induced by herpes simplex virus-2 infection in vitro. J Integr Med. 2023; 21(3): 277-288.


Subject(s)
Humans , Caspase 1/metabolism , Inflammasomes/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Simplexvirus/metabolism , Drugs, Chinese Herbal/pharmacology , Herpes Simplex/drug therapy
7.
China Journal of Chinese Materia Medica ; (24): 3589-3601, 2023.
Article in Chinese | WPRIM | ID: wpr-981490

ABSTRACT

This study aimed to explore the anti-glioma effect of natural compound pterostilbene(PTE) through regulating pyroptosis and apoptosis pathways, and to analyze the possible anti-glioma pathways and targets of PTE by network pharmacology and molecular docking. In this study, the action targets of PTE and the glioma targets were obtained by network pharmacology to construct a target network and a protein-protein interaction(PPI) network to predict the possible action targets of PTE against glioma. Molecular docking was performed on the core targets by AutoDock and the action pathways of PTE against glioma were predicted by enrichment analysis. In addition, the effect of PTE on the viability of U87MG and GL261 glioma cells was detected by CCK-8 assay. Clone formation assay and cell scratching assay were used to explore the effect of different concentrations of PTE on the proliferation and migration, respectively of glioma cells. Hoechst staining was used to observe PTE-induced apoptosis in glioma cells. The changes in mitochondrial membrane potential were detected by JC-1 staining. The pyroptosis-inducing effect of PTE on glioma cells was observed by inverted microscopy and lactate dehydrogenase(LDH) assay. Hoechst 33342/PI dual staining assay was performed to detect the integrity of glioma cell membranes. The expressions of pyroptosis and apoptosis-related proteins in glioma cells after PTE induction were determined by Western blot. In this study, 37 anti-glioma targets of PTE were obtained, and enrichment analysis suggested that PTE exerted anti-glioma effects through various signaling pathways including cancer pathway, proteoglycan in cancer, PI3K/AKT pathway, and apoptosis regulatory pathway. Molecular docking revealed that PTE had good binding activity with the main targets. Compared with the control group, PTE significantly reduced the viability as well as the proliferation, migration and adhesion abilities of U87MG and GL261 cells; it induced the apoptosis of the two glioma cells and the decrease of mitochondrial membrane potential in U87MG cells, and the effects increased with the increase of drug concentration. Compared with the conditions in the control group, glioma cells in the PTE group had increased pyroptosis-specific appearance and gradually increased LDH release; the number of PI positive cells was significantly elevated with the increase of PTE concentration as revealed by Hoechst 33342/PI staining; the expression levels of apoptosis-related factors cleaved PARP1 and B-cell lymphoma-2(Bcl-2) associated X(BAX) in the PTE group were markedly up-regulated, while the expression level of Bcl-2 was markedly down-regulated; the activation levels of pyroptosis-related proteins cleaved caspase-3 and gasdermin E-N(GSDME-N) had a remarkable rise in the PTE group, while no significant changes were found in the activation levels of gasdermin D-N(GSDMD-N) and cleaved caspase-1. In summary, PTE plays an anti-glioma role by inhibiting cell viability, proliferation, and migration and activating the caspase-3/GSDME-mediated pyroptosis pathway and mitochondrial apoptosis pathway.


Subject(s)
Pyroptosis , Caspase 3/metabolism , Network Pharmacology , Gasdermins , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases/metabolism , Apoptosis , Proto-Oncogene Proteins c-bcl-2/metabolism
8.
China Journal of Chinese Materia Medica ; (24): 3055-3065, 2023.
Article in Chinese | WPRIM | ID: wpr-981436

ABSTRACT

This paper aimed to investigate the effects of high mobility group box 1(HMGB1)-mediated pulmonary artery smooth muscle cell pyroptosis and immune imbalance on chronic obstructive pulmonary disease-associated pulmonary hypertension(COPD-PH) in rats and the intervening mechanism of Compound Tinglizi Decoction. Ninety rats were randomly divided into a normal group, a model group, low-dose, medium-dose, and high-dose Compound Tinglizi Decoction groups, and a simvastatin group. The rat model of COPD-PH was established by fumigation combined with lipopolysaccharide(LPS) intravascular infusion, which lasted 60 days. Rats in the low, medium, and high-dose Compound Tinglizi Decoction groups were given 4.93, 9.87, and 19.74 g·kg~(-1) Compound Tinglizi Decoction by gavage, respectively. Rats in the simvastatin group were given 1.50 mg·kg~(-1) simvastatin by gavage. After 14 days, the lung function, mean pulmonary artery pressure, and arterial blood gas of rats were analyzed. Lung tissues of rats were collected for hematoxylin-eosin(HE) staining to observe the pathological changes. Real-time fluorescent quantitative polymerase chain reaction(qRT-PCR) was used to determine the expression of related mRNA in lung tissues, Western blot(WB) was used to determine the expression of related proteins in lung tissues, and enzyme linked immunosorbent assay(ELISA) was used to determine the levels of inflammatory factors in the lung tissues of rats. The ultrastructure of lung cells was observed by transmission electron microscope. The forced vital capacity(FVC), forced expiratory volume in 0.3 second(FEV_(0.3)), FEV_(0.3)/FVC, peek expiratory flow(PEF), respiratory dynamic compliance(Cdyn), arterial partial pressure of oxygen(PaO_2), and arterial oxygen saturation(SaO_2) were increased, and resistance of expiration(Re), mean pulmonary arterial pressure(mPAP), right ventricular hypertrophy index(RVHI), and arterial partial pressure of carbon dioxide(PaCO_2) were decreased by Compound Tinglizi Decoction in rats with COPD-PH. Compound Tinglizi Decoction inhibited the protein expression of HMGB1, receptor for advanced glycation end products(RAGE), pro caspase-8, cleaved caspase-8, and gasdermin D(GSDMD) in lung tissues of rats with COPD-PH, as well as the mRNA expression of HMGB1, RAGE, and caspase-8. Pulmonary artery smooth muscle cell pyroptosis was inhibited by Compound Tinglizi Decoction. Interferon-γ(IFN-γ) and interleukin-17(IL-17) were reduced, and interleukin-4(IL-4) and interleukin-10(IL-10) were incresead by Compound Tinglizi Decoction in lung tissues of rats with COPD-PH. In addition, the lesion degree of trachea, alveoli, and pulmonary artery in lung tissues of rats with COPD-PH was improved by Compound Tinglizi Decoction. Compound Tinglizi Decoction had dose-dependent effects. The lung function, pulmonary artery pressure, arterial blood gas, inflammation, trachea, alveoli, and pulmonary artery disease have been improved by Compound Tinglizi Decoction, and its mechanism is related to HMGB1-mediated pulmonary artery smooth muscle cell pyroptosis and helper T cell 1(Th1)/helper T cell 2(Th2), helper T cell 17(Th17)/regulatory T cell(Treg) imbalance.


Subject(s)
Animals , Rats , Caspase 8 , Pyroptosis , HMGB1 Protein/genetics , Hypertension, Pulmonary/etiology , Pulmonary Disease, Chronic Obstructive/genetics
9.
Journal of Central South University(Medical Sciences) ; (12): 252-259, 2023.
Article in English | WPRIM | ID: wpr-971392

ABSTRACT

Inflammatory injury of the intestine is often accompanied by symptoms such as damage to intestinal mucosa, increased intestinal permeability, and intestinal motility dysfunction. Inflammatory factors spread throughout the body via blood circulation, and can cause multi-organ failure. Pyroptosis is a newly discovered way of programmed cell death, which is mainly characterized by the formation of plasma membrane vesicles, cell swelling until the rupture of the cell membrane, and the release of cell contents, thereby activating a drastic inflammatory response and expanding the inflammatory response cascade. Pyroptosis is widely involved in the occurrence of diseases, and the underlying mechanisms for inflammation are still a hot spot of current research. The caspase-1 mediated canonical inflammasome pathway of pyroptosis and caspase-4/5/8/11-mediated non-canonical inflammasome pathway are closely related to the occurrence and development of intestinal inflammation. Therefore, investigation of the signaling pathways and molecular mechanisms of pyroptosis in intestinal injury in sepsis, inflammatory bowel diseases, infectious enteristic, and intestinal tumor is of great significance for the prevention and treatment of intestinal inflammatory injury.


Subject(s)
Humans , Pyroptosis , Inflammasomes/metabolism , Apoptosis , Caspase 1 , Inflammation
10.
Journal of Central South University(Medical Sciences) ; (12): 242-251, 2023.
Article in English | WPRIM | ID: wpr-971391

ABSTRACT

Necroptosis is one of the regulated cell death, which involves receptor interacting protein kinase (RIPK) 1/RIPK3/mixed lineage kinase domain like protein (MLKL) signaling pathway. Among them, MLKL is the final execution of necroptosis. The formation of RIPK1/RIPK3/MLKL necrosome induces the phosphorylated MLKL, and the activated MLKL penetrates into the membrane bilayer to form membrane pores, which damages the integrity of the membrane and leads to cell death. In addition to participating in necroptosis, MLKL is also closely related to other cell death, such as NETosis, pyroptosis, and autophagy. Therefore, MLKL is involved in the pathological processes of various diseases related to abnormal cell death pathways (such as cardiovascular diseases, neurodegenerative diseases and cancer), and may be a therapeutic target of multiple diseases. Understanding the role of MLKL in different cell death can lay a foundation for seeking various MLKL-related disease targets, and also guide the development and application of MLKL inhibitors.


Subject(s)
Protein Kinases/metabolism , Necroptosis/physiology , Receptor-Interacting Protein Serine-Threonine Kinases , Signal Transduction , Pyroptosis , Apoptosis
11.
Chinese Journal of Burns ; (6): 35-44, 2023.
Article in Chinese | WPRIM | ID: wpr-971147

ABSTRACT

Objective: To investigate the influence of reactive oxygen species (ROS) responsive self-assembled nanomicelle loaded with pyroptosis inhibitor on full-thickness skin defects in diabetic rats. Methods: Experimental research methods were employed. A nucleotide-binding oligomerization domain (NOD) 1/2 inhibitor (NOD-IN-1) was encapsulated with nanomicelle polyethylene glycol-block-polypropylene sulfide (PEG-b-PPS), and the resulting product was called PEPS@NOD-IN-1. The morphology and hydration particle size of PEG-b-PPS and PEPS@NOD-IN-1 were observed by transmission electron microscope and particle size analyzer, respectively, and the encapsulation rate and drug loading rate of PEPS@NOD-IN-1 to NOD-IN-1 and the cumulative release rate of NOD-IN-1 by PEPS@NOD-IN-1 in phosphate buffer solution (PBS) alone and hydrogen peroxide-containing PBS within 40 h were measured and calculated by microplate reader, and the sample number was 3. Twenty-four male Sprague-Dawley rats aged 6-7 weeks were injected with streptozotocin to induce type 1 diabetes mellitus. Six full-thickness skin defect wounds were made on the back of each rat. The injured rats were divided into PBS group, NOD-IN-1 group, PEG-b-PPS group, and PEPS@NOD-IN-1 group with corresponding treatment according to the random number table, with 6 rats in each group. The wound healing was observed on post injury day (PID) 3, 7, and 12, and the wound healing rate was calculated. The ROS levels in wound tissue were detected by immunofluorescence method on PID 3. On PID 7, the granulation tissue thickness in wound was assessed by hematoxylin-eosin staining, the mRNA expressions of NOD1 and NOD2 were detected by real-time fluorescence quantitative reverse transcription polymerase chain reaction, and the protein expressions of NOD1, NOD2, and GSDMD-N terminals were detected by Western blotting. Six wounds from different rats in each group were taken for detection of the above indicators. Wound tissue (3 samples per group) was taken from rats in PBS group and PEPS@NOD-IN-1 group on PID 7, and transcriptome sequencing was performed using high-throughput sequencing technology platform. Differentially expressed genes (DEGs) significantly down-regulated in PEPS@NOD-IN-1 group as compared with PBS group were screened, and the enrichment analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) was performed. The DEG heatmap of the NOD-like receptor pathway, a pyroptosis-related pathway, was made. Protein-protein interaction (PPI) analysis of DEGs in heatmap was performed through the STRING database to screen key genes of PEPS@NOD-IN-1 regulating the NOD-like receptor pathway. Data were statistically analyzed with analysis of variance for repeated measurement, one-way analysis of variance, and Tukey test. Results: PEG-b-PPS and PEPS@NOD-IN-1 were in spherical structures of uniform size, with hydration particle sizes of (134.2±3.3) and (143.1±2.3) nm, respectively. The encapsulation rate of PEPS@NOD-IN-1 to NOD-IN-1 was (60±5)%, and the drug loading rate was (15±3)%. The release of NOD-IN-1 from PEPS@NOD-IN-1 in PBS alone was slow, and the cumulative release rate at 40 h was only (12.4±2.3)%. The release of NOD-IN-1 from PEPS@NOD-IN-1 in hydrogen peroxide-containing PBS within 10 h was very rapid, and the cumulative release rate at 10 h reached (90.1±3.6)%. On PID 3 and 7, the wounds of rats in the four groups were gradually healed, and the healing in PEPS@NOD-IN-1 group was better than that in the other three groups. On PID 12, the wound scab area in PBS group was large, the wound epithelialization in NOD-IN-1 group and PEG-b-PPS group was obvious, and the wound in PEPS@NOD-IN-1 group was close to complete epithelialization. Compared with those in PBS group, NOD-IN-1 group, and PEG-b-PPS group, the wound healing rates on PID 7 and 12 in PEPS@NOD-IN-1 group were significantly increased (P<0.05), the level of ROS in wound tissue on PID 3 was significantly decreased (P<0.05), the thickness of granulation tissue in wound on PID 7 was significantly thickened (P<0.05), and the mRNA expressions of NOD1 and NOD2 and the protein expressions of NOD1, NOD2, and GSDMD-N terminals in wound tissue on PID 7 were significantly decreased (P<0.05). KEGG pathway analysis showed that DEGs significantly down-regulated in PEPS@NOD-IN-1 group as compared with PBS group were significantly enriched in NOD-like receptors, hypoxia-inducible factors, mitogen-activated protein kinases, and tumor necrosis factor (TNF) pathways. In the DEG heatmap of NOD-like receptor pathway, the genes regulating pyroptosis mainly involved NOD1, NOD2, NOD-like receptor thermoprotein domain-related protein 3, Jun, signal transduction and transcriptional activator 1 (STAT1), TNF-α-induced protein 3. The PPI results showed that NOD1, NOD2, and STAT1 were the key genes of PEPS@NOD-IN-1 regulating the NOD-like receptor pathway. Conclusions: PEPS@NOD-IN-1 can down-regulate the level of local ROS in wounds and the expression of NOD1, NOD2, and GSDMD-N terminals, the key regulators of pyroptosis, thereby promoting the repair of full-thickness skin defect wounds in diabetic rats. PEPS@NOD-IN-1 can also significantly down-regulate the pyroptosis, inflammation, and hypoxia-related pathways of wounds, and regulate NOD-like receptor pathways by down-regulating key genes NOD1, NOD2, and STAT1.


Subject(s)
Rats , Male , Animals , Reactive Oxygen Species , Wound Healing , Rats, Sprague-Dawley , Diabetes Mellitus, Experimental , Hydrogen Peroxide , Pyroptosis , Skin Abnormalities , Soft Tissue Injuries , NLR Proteins , Hypoxia , RNA, Messenger
12.
Chinese Journal of Hepatology ; (12): 20-31, 2023.
Article in Chinese | WPRIM | ID: wpr-970940

ABSTRACT

Objective: To investigate the potential function and related mechanism of microRNA-223 (miRNA-223) in the podocyte pyroptosis of hepatitis B virus (HBV)-associated glomerulonephritis induced by HBV X protein (HBx). Methods: HBx-overexpressing lentivirus was transfected into human renal podocytes to mimic the pathogenesis of HBV-GN. Real-time fluorescence quantitative PCR and Western blotting experiments were used to detect the mRNA and protein expression of pyroptosis-related proteins [nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD (ASC) and caspase-1], and inflammatory factors (interleukin-1β and interleukin-18), respectively.TUNEL staining and flow cytometry were used to detect the number of pyroptosis cells. Immunofluorescence staining was used to detect the expression of podocytes biomarkers desmin and nephrin; Hoechst 33342 staining was used to observe the morphological and quantitative changes of podocyte nuclei. Enzyme-linked immunosorbent assay was used to measure caspase-1 activity. The dual luciferase reporter gene assay was used to verify the downstream target of miRNA-223. Podocytes were divided into the following nine groups: control group (no special treatment), empty plasmid group (transfected with empty plasmid), HBx overexpression group (transfected with HBx overexpression lentivirus), HBx overexpression+miRNA-223 mimic group (transfected with HBx overexpression lentivirus and miRNA-223 mimic), HBx overexpression+miRNA-223 inhibitor group (transfected with HBx overexpression lentivirus and miRNA-223 inhibitor), HBx overexpression+miRNA-223 mimic+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 mimic+ NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 mimic and NLRP3 siRNA), HBx overexpression+miRNA-223 inhibitor+NLRP3 group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 overexpression plasmid), HBx overexpression+miRNA-223 inhibitor+NLRP3 siRNA group (transfected with HBx overexpression lentivirus, miRNA-223 inhibitor and NLRP3 siRNA). Results: miRNA-223 was down-regulated in HBx overexpression group compared with the control group (P < 0.05). TUNEL and immunofluorescence staining showed that NLRP3 knockdown attenuated podocyte injury and pyroptosis induced by HBx overexpression (P < 0.05). Dual luciferase reporter gene assay demonstrated that NLRP3 was one of the downstream targets of miRNA-223. Rescue experiments revealed that NLRP3 overexpression weakened the protective effect of miRNA-223 in podocyte injury (P < 0.05). The addition of miRNA-223 mimic and NLRP3 siRNA decreased the expression of NLRP3 inflammasome and cytokines, and reduced the number of pyroptosis cells induced by HBx overexpression (all P < 0.05); The addition of miRNA-223 inhibitor and NLRP3 overexpression plasmid significantly increased the expression of NLRP3 inflammasome and cytokines, caspase-1 activity, and the number of pyroptosis cells (all P < 0.05). Conclusion: HBx may promote podocyte pyroptosis of HBV-GN via downregulating miRNA-223 targeting NLRP3 inflammasome, suggesting that miRNA-223 is expected to be a potential target for the treatment of HBV-GN.


Subject(s)
Humans , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Podocytes/metabolism , Hepatitis B virus/genetics , Caspase 1/metabolism , Cytokines/metabolism , Carrier Proteins/metabolism , MicroRNAs/genetics , Glomerulonephritis/metabolism , RNA, Small Interfering
13.
China Journal of Chinese Materia Medica ; (24): 1098-1107, 2023.
Article in Chinese | WPRIM | ID: wpr-970581

ABSTRACT

To explore the research hotspots and frontier directions of pyroptosis in the field of traditional Chinese medicine(TCM), the authors searched CNKI and Web of Science for literature related to pyroptosis in TCM, screened literature according to the search strategy and inclusion criteria, and analyzed the publication trend of the included literature. VOSviewer was used to draw author cooperation and keyword co-occurrence network diagrams, and CiteSpace was employed for keyword clustering, emergence, and timeline view. Finally, 507 Chinese literature and 464 English literature were included, and it was found that the number of Chinese and English literature was increasing rapidly year by year. The co-occurrence of the authors showed that in terms of Chinese literature, there was a representative research team composed of DU Guan-hua, WANG Shou-bao and FANG Lian-hua, and for English literature, the representative research team was composed of XIAO Xiao-he, BAI Zhao-fang and XU Guang. The network visualization of Chinese and English keywords revealed that inflammation, apoptosis, oxidative stress, autophagy, organ damage, fibrosis, atherosclerosis, and ischemia-reperfusion injury were the primary research diseases and pathological processes in TCM; berberine, resveratrol, puerarin, na-ringenin, astragaloside Ⅳ, and baicalin were the representative active ingredients; NLRP3/caspase-1/GSDMD, TLR4/NF-κB/NLRP3, and p38/MAPK signaling pathways were the main research pathways. Keyword clustering, emergence, and timeline analysis indicated that the pyroptosis research in TCM focused on the mechanism of TCM monomers and compounds intervening in diseases and pathological processes. Pyroptosis is a research hotspot in the area of TCM, and the current discussion mainly focuses on the mechanism of the therapeutic effect of TCM.


Subject(s)
Pyroptosis , Medicine, Chinese Traditional , NLR Family, Pyrin Domain-Containing 3 Protein , Pattern Recognition, Automated , Apoptosis
14.
Acta Physiologica Sinica ; (6): 82-90, 2023.
Article in Chinese | WPRIM | ID: wpr-970108

ABSTRACT

Apoptosis and autophagy of follicular granulosa cells play an important regulatory role in the process of ovarian follicular atresia in animals. Recent studies have shown that ferroptosis and pyroptosis are also involved in the process of ovarian follicular atresia. Ferroptosis is a form of cell death caused by iron-dependent lipid peroxidation and reactive oxygen species (ROS) accumulation. Studies have confirmed that autophagy- and apoptosis-mediated follicular atresia also have typical characteristics of ferroptosis. Pyroptosis is a pro-inflammatory cell death dependent on Gasdermin protein, which can regulate ovarian reproductive performance by regulating follicular granulosa cells. This article reviews the roles and mechanisms of several types of programmed cell death independently or interactively regulating follicular atresia, in order to expand the theoretical research on follicular atresia mechanism and provide the theoretical reference for the mechanism of programmed cell death-induced follicular atresia.


Subject(s)
Female , Animals , Follicular Atresia , Apoptosis , Cell Death , Ferroptosis , Pyroptosis
15.
Chinese Acupuncture & Moxibustion ; (12): 309-316, 2023.
Article in Chinese | WPRIM | ID: wpr-969990

ABSTRACT

OBJECTIVE@#To observe the effects of electroacupuncture (EA) on NLRP3 inflammasome and its downstream protein gastermin D (GSDMD) in rats with primary dysmenorrhea (PDM), and to explore the potential mechanism of EA on the treatment of PDM.@*METHODS@#Forty healthy female SD rats without pregnancy were randomly divided into a control group, a model group, an EA group and an ibuprofen group, 10 rats in each group. PDM model was prepared by injection of estradiol benzoate and oxytocin. Except the control group, the rats in each group were subcutaneously injected with estradiol benzoate for 10 days, and oxytocin was injected on the 11th day. The rats in the EA group were intervened with EA (dense wave, frequency of 50 Hz) at "Guanyuan" (CV 4) and "Sanyinjiao" (SP 6) at the same time of modeling, once a day, 20 min each time, for 10 consecutive days. The rats in the ibuprofen group were treated with 0.8 mL of ibuprofen by gavage (concentration of ibuprofen solution was 1.25 mg/mL) for 10 consecutive days. After modeling, the writhing reaction was observed. After intervention, the HE staining method was used to observe the histological morphology of uterus and evaluate the pathological damage score of uterus; ELISA method was used to detect the serum levels of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α); Western blot method was used to detect the protein expression of NLRP3, apoptosis related spot like protein (ASC), caspase-1, GSDMD, GSDMD-N and inflammatory factors (interleukin [IL]-1β, IL-18) in uterine tissue.@*RESULTS@#In the model group, a large number of vacuolar degeneration and death of endometrial epithelial cells, spiral arterioles congestion in lamina propria and neutrophil infiltration were observed. In the EA group, there was a small amount of vacuolar degeneration and death of endometrial epithelial cells, a small amount of spiral arterioles congestion in the lamina propria, and a small amount of neutrophils infiltration. In the ibuprofen group, there was very small number of degeneration and death of endometrial epithelial cells, and no obvious arterial congestion was found in lamina propria, and neutrophil infiltration was occasionally seen. Compared with the control group, in the model group the number of writhing was increased (P<0.01), the writhing reaction score and serum level of PGF2α and PGF2α/PGE2 value were increased (P<0.01), the level of PGE2 was decreased (P<0.01). Compared with the model group, in the EA group and the ibuprofen group the number of writhing were decreased (P<0.05), the latency of writhing was prolonged (P<0.01), the writhing reaction scores and serum levels of PGF2α and PGF2α/PGE2 values were decreased (P<0.05, P<0.01), the levels of PGE2 were increased (P<0.01). Compared with the control group, the protein expression of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18 in the uterine tissues of rats was increased in the model group (P<0.01). Compared with the model group, the protein expression of NLRP3, ASC, caspase-1, GSDMD, GSDMD-N, IL-1β and IL-18 in the uterine tissues of rats was decreased in the EA group and the ibuprofen group (P<0.01, P<0.05). There was no significant difference between the EA group and the ibuprofen group in the above indexes (P>0.05).@*CONCLUSION@#EA could alleviate pain and uterine tissue injury in rats with PDM. The mechanism may be related to the inhibition of the activation of NLRP3 inflammasome in rat uterine tissues, thereby inhibiting pyroptosis and its inflammatory factors release.


Subject(s)
Animals , Female , Pregnancy , Rats , Caspases , Dinoprost , Dinoprostone , Dysmenorrhea , Electroacupuncture , Ibuprofen , Inflammasomes , Interleukin-18 , NLR Family, Pyrin Domain-Containing 3 Protein , Oxytocin , Phosphate-Binding Proteins , Pyroptosis , Rats, Sprague-Dawley , Uterus
16.
Chinese Journal of Oncology ; (12): 146-152, 2023.
Article in Chinese | WPRIM | ID: wpr-969817

ABSTRACT

Objective: This study aims to investigate the associations between genetic variations of pyroptosis pathway related key genes and adverse events (AEs) of postoperative chemoradiotherapy (CRT) in patients with rectal cancer. Methods: DNA was extracted from the peripheral blood which was collected from 347 patients before CRT. Sequenom MassARRAY was used to detect the genotypes of 43 haplotype-tagging single nucleotide polymorphisms (htSNPs) in eight pyroptosis genes, including absent in melanoma 2 (AIM2), caspase-1 (CASP1), caspase-4(CASP4), caspase-5 (CASP5), caspase-11 (CASP11), gasdermin D (GSDMD), gasdermin E (GSDME) and NLR family pyrin domain containing 3 (NLRP3). The associations between 43 htSNPs and AEs were evaluated by the odd ratios (ORs) and 95% confidence intervals (CIs) by unconditional logistic regression models, adjusted for sex, age, clinical stage, tumor grade, Karnofsky performance status (KPS), surgical procedure, and tumor location. Results: Among the 347 patients with rectal cancer underwent concurrent CRT with capecitabine after surgery, a total of 101(29.1%) occurred grade ≥ 2 leukopenia. rs11226565 (OR=0.41, 95% CI: 0.21-0.79, P=0.008), rs579408(OR=1.54, 95% CI: 1.03-2.29, P=0.034) and rs543923 (OR=0.63, 95% CI: 0.41-0.98, P=0.040) were significantly associated with the occurrence of grade ≥ 2 leukopenia. One hundred and fifty-six (45.0%) had grade ≥ 2 diarrhea, two SNPs were significantly associated with the occurrence of grade ≥ diarrhea, including CASP11 rs10880868 (OR=0.55, 95% CI: 0.33-0.91, P=0.020) and GSDME rs2954558 (OR=1.52, 95% CI: 1.01-2.31, P=0.050). In addition, sixty-six cases (19.0%) developed grade ≥2 dermatitis, three SNPs that significantly associated with the risk of grade ≥2 dermatitis included GSDME rs2237314 (OR=0.36, 95% CI: 0.16-0.83, P=0.017), GSDME rs12540919 (OR=0.52, 95% CI: 0.27-0.99, P=0.045) and NLRP3 rs3806268 (OR=1.51, 95% CI: 1.03-2.22, P=0.037). There was no significant difference in the association between other genetic variations and AEs of rectal cancer patients (all P>0.05). Surgical procedure and tumor location had great impacts on the occurrence of grade ≥2 diarrhea and dermatitis (all P<0.01). Conclusion: The genetic variants of CASP4, CASP11, GSDME and NLRP3 are associated with the occurrence of AEs in patients with rectal cancer who received postoperative CRT, suggesting they may be potential genetic markers in predicting the grade of AEs to achieve individualized treatment of rectal cancer.


Subject(s)
Humans , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Gasdermins , Chemoradiotherapy/adverse effects , Rectal Neoplasms/surgery , Caspases/metabolism , Diarrhea/chemically induced , Leukopenia/genetics , Genetic Variation , Dermatitis
17.
Biol. Res ; 56: 5-5, 2023. ilus, graf
Article in English | LILACS | ID: biblio-1429906

ABSTRACT

BACKGROUND: Alpha-kinase 1 (ALPK1) is a master regulator in inflammation and has been proved to promote renal fibrosis by promoting the production of IL-1ß in diabetic nephropathy (DN) mice. Pyroptosis is involved in high glucose (HG)-induced tubular cells injury, characterized by activation of Gasdermin D (GSDMD) and the release of IL-1ß and IL-18, resulting in inflammatory injury in DN. It is reasonable to assume that ALPK1 is involved in pyroptosis-related tubular injury in DN. However, the mechanism remains poorly defined. METHODS: Immunohistochemistry (IHC) staining was performed to detect the expression of pyroptosis- and fibrosis-related proteins in renal sections of DN patients and DN mice. DN models were induced through injection of streptozotocin combined with a high-fat diet. Protein levels of ALPK1, NF-κB, Caspase-1, GSDMD, IL-1ß, IL-18 and α-SMA were detected by Western blot. HK-2 cells treated with high-glucose (HG) served as an in vitro model. ALPK1 small interfering RNA (siRNA) was transfected into HK-2 cells to down-regulate ALPK1. The pyroptosis rates were determined by flow cytometry. The concentrations of IL-1ß and IL-18 were evaluated by ELISA kits. Immunofluorescence staining was used to observe translocation of NF-κB and GSDMD. RESULTS: The heat map of differentially expressed genes showed that ALPK1, Caspase-1 and GSDMD were upregulated in the DN group. The expression levels of ALPK1, Caspase-1, GSDMD and CD68 were increased in renal biopsy tissues of DN patients by IHC. ALPK1expression and CD68+ macrophages were positively correlated with tubular injury in DN patients. Western blot analysis showed increased expressions of ALPK1, phospho-NF-κB P65, GSDMD-NT, and IL-1ß in renal tissues of DN mice and HK-2 cells, accompanied with increased renal fibrosis-related proteins (FN, α-SMA) and macrophages infiltration in interstitial areas. Inhibition of ALPK1 attenuated HG-induced upregulation expressions of NF-κB, pyroptosis-related proteins Caspase-1, GSDMD-NT, IL-1ß, IL-18, α-SMA, and pyroptosis level in HK-2 cells. Also, the intensity and nuclear translocation of NF-κB and membranous translocation of GSDMD were ameliorated in HG-treated HK-2 cells after treatment with ALPK1 siRNA. CONCLUSIONS: Our data suggest that ALPK1/NF-κB pathway initiated canonical caspase-1-GSDMD pyroptosis pathway, resulting in tubular injury and interstitial inflammation of DN.


Subject(s)
Animals , Mice , Diabetes Mellitus , Diabetic Nephropathies , Fibrosis , NF-kappa B/metabolism , Caspases , Interleukin-18 , RNA, Small Interfering , Pyroptosis , Glucose , Inflammation
18.
Acta cir. bras ; 38: e387323, 2023. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1527590

ABSTRACT

Purpose: To observe the effect of puerarin on renal ischemia-reperfusion (I/R) injury in rats, and to explore its mechanism based on NLRP3/Caspase-1/GSDMD pathway. Methods: Twenty-one Sprague-Dawley rats were divided into three groups: sham-operated group (sham), model group (RIRI), and puerarin treatment group (RIRI + Pue). The model of acute renal I/R injury was established by cutting the right kidney and clamping the left renal pedicle for 45 min. Results: Renal function parameters were statistically significant in group comparisons. The renal tissue structure of rats in sham group was basically normal. Pathological changes were observed in the RIRI group. The renal pathological damage score and apoptosis rate in the RIRI group were higher than those in the sham group, and significantly lower in the RIRI + Pue group than in the RIRI group. Indicators of oxidative stress-superoxide dismutase, malondialdehyde, and glutathione peroxidase-were statistically significant in group comparisons. Compared with the sham group, the relative expressions of NLRP3, Caspase-1 and GSDMD proteins in the RIRI group were increased. Compared with the RIRI group, the RIRI + Pue group had significant reductions. Conclusions: Puerarin can inhibit the activation of NLRP3/Caspase-1/GSDMD pathway, inhibit inflammatory response and pyroptosis, and enhance the antioxidant capacity of kidney, thereby protecting renal I/R injury in rats.


Subject(s)
Animals , Rats , Reperfusion Injury , Pyroptosis , Inflammation , Kidney/injuries
19.
Chinese Acupuncture & Moxibustion ; (12): 783-792, 2023.
Article in Chinese | WPRIM | ID: wpr-980796

ABSTRACT

OBJECTIVE@#To observe the effect of Tongdu Tiaoshen (promoting the circulation of the governor vessel and regulating the spirit) electroacupuncture (EA) pretreatment on pyroptosis mediated by peroxisome proliferators-activated receptor γ (PPARγ) of the cerebral cortex in rats with cerebral ischemia reperfusion injury (CIRI) and explore the potential mechanism of EA for the prevention and treatment of CIRI.@*METHODS@#A total of 110 clean-grade male SD rats were randomly divided into a sham-operation group, a model group, an EA group, an EA + inhibitor group and an agonist group, 22 rats in each group. In the EA group, before modeling, EA was applied to "Baihui" (GV 20), "Fengfu" (GV 16) and "Dazhui" (GV 14), with disperse-dense wave, 2 Hz/5 Hz in frequency, 1 to 2 mA in intensity, lasting 20 min; once a day, consecutively for 7 days. On the base of the intervention as the EA group, on the day 7, the intraperitoneal injection with the PPARγ inhibitor, GW9662 (10 mg/kg) was delivered in the EA + inhibitor group. In the agonist group, on the day 7, the PPARγ agonist, pioglitazone hydrochloride (10 mg/kg) was injected intraperitoneally. At the end of intervention, except the sham-operation group, the modified thread embolization method was adopted to establish the right CIRI model in the rats of the other groups. Using the score of the modified neurological severity score (mNSS), the neurological defect condition of rats was evaluated. TTC staining was adopted to detect the relative cerebral infarction volume of rat, TUNEL staining was used to detect apoptosis of cerebral cortical nerve cells and the transmission electron microscope was used to observe pyroptosis of cerebral cortical neural cells. The positive expression of PPARγ and nucleotide-binding to oligomerization domain-like receptor protein 3 (NLRP3) in the cerebral cortex was detected with the immunofluorescence staining. The protein expression of PPARγ, NLRP3, cysteinyl aspartate specific protease-1 (caspase-1), gasdermin D (GSDMD) and GSDMD-N terminal (GSDMD-N) in the cerebral cortex was detected with Western blot. Using the quantitative real-time fluorescence-PCR, the mRNA expression of PPARγ, NLRP3, caspase-1 and GSDMD of the cerebral cortex was detected. The contents of interleukin (IL)-1β and IL-18 in the cerebral cortex of rats were determined by ELISA.@*RESULTS@#Compared with the sham-operation group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.01), pyroptosis was severe, the protein and mRNA expression levels of PPARγ, NLRP3, caspase-1 and GSDMD were elevated (P<0.01); and the protein expression of GSDMD-N and contents of IL-1β and IL-18 were increased (P<0.01) in the model group. When compared with the model group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01) in the EA group and the agonist group; while, in the EA + inhibitor group, the protein expression of PPARγ was increased (P<0.01), the protein and mRNA expression levels of NLRP3 and GSDMD were decreased (P<0.01, P<0.05), the mRNA expression of caspase-1 was reduced (P<0.01); and the contents of IL-1β and IL-18 were lower (P<0.01). When compared with the EA + inhibitor group, the mNSS, the relative cerebral infarction volume and the TUNEL positive cells rate were decreased (P<0.05, P<0.01), pyroptosis was alleviated, the protein and mRNA expression levels of PPARγ were increased (P<0.01), the protein and mRNA expression levels of NLRP3, caspase-1 and GSDMD were decreased (P<0.01), the protein expression of GSDMD-N was reduced (P<0.01); and the contents of IL-1β and IL-18 were declined (P<0.01) in the EA group. Compared with the agonist group, in the EA group, the relative cerebral infarction volume and the TUNEL positive cells rate were increased (P<0.05, P<0.01), the mRNA expression of PPARγ was decreased (P<0.01) and the protein expression of GSDMD-N was elevated (P<0.05); and the contents of IL-1β and IL-18 were higher (P<0.01).@*CONCLUSION@#Tongdu Tiaoshen EA pretreatment can attenuate the neurological impairment in the rats with CIRI, and the underlying mechanism is related to the up-regulation of PPARγ inducing the inhibition of NLRP3 in the cerebral cortex of rats so that pyroptosis is affected.


Subject(s)
Male , Animals , Rats , Rats, Sprague-Dawley , PPAR gamma/genetics , Pyroptosis , Interleukin-18 , Electroacupuncture , NLR Family, Pyrin Domain-Containing 3 Protein , Cerebral Cortex , Cerebral Infarction/therapy , Caspases , RNA, Messenger
20.
Chinese Journal of Industrial Hygiene and Occupational Diseases ; (12): 97-102, 2022.
Article in Chinese | WPRIM | ID: wpr-935753

ABSTRACT

Objective: To explore the role and significance of pyroptosis in gas explosion-induced acute lung injury (ALI) in rats. Methods: In February 2018, 126 SPF male SD rats were selected and randomly divided into blank control group (18 rats) and experimental group (40 m, 80 m, 120 m, 160 m, 200 m and 240 m, 18 per group) . The experimental group carried out gas explosion in the roadway to build the ALI model, the control group did not carry out gas explosion, and other conditions were consistent with the experimental group. Respiratory function indexes such as respiratory frequency (f) , tidal volume (TV) , minute ventilation (MV) and airway stenosis index (Penh) were measured 24 hours after the explosion. 5 rats in each group were sacrificed after anesthesia, Hematoxylin-Eosin (HE) staining was used to observe the pathological morphology of lung tissue. Immunohistochemistry was used to detect the content of Caspase-1. Western blotting was used to detect the content of cell pyroptosis including nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) , Caspase-1, interleukin-1β (IL-1β) and interleukin-18 (IL-18) in lung tissue related protein expression. Results: The f and MV of rats in the experimental group were higher than those in the control group (P<0.05) . Except for the 40 m and 80 m groups, the TV of rats in the other experimental groups were higher than those in the control group (P<0.05) . Except for the 40 m group, the Penh of rats in the experimental groups were lower than those in the control group (P<0.05) . HE staining showed that the lung tissue of the experimental groups at different distance points showed obvious edema of the pulmonary interstitium and alveoli, a large number of red blood cells and inflammatory cells exuded in the alveolar space, thickening of the pulmonary interstitium, and increased lung injury score (P<0.05) . The results of immunohistochemistry showed that the positive expression of Caspase-1 in each experimental group was higher than that in the control group (P<0.05) . Western blotting results showed that the expression of pyroptosis-related proteins in each experimental group was higher than that in the control group (P<0.05) . Conclusion: Pyroptosis is involved in the pathophysiological process of gas explosion-induced ALI in rats.


Subject(s)
Animals , Male , Rats , Acute Lung Injury/pathology , Explosions , Lung/pathology , Pyroptosis , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL